قيس محمّد علي الفقي

أستاذ مساعد

دكتوراه في الرياضيات
كليّة العلوم و الآداب
قسم الرياضيات


متخصّص في التحليل الدالّي. للتعرّف أكثر على إهتماماتي البحثيّة
الرجاء زيادة صفحتي:
 https://www.researchgate.net/profile/Kais-Feki


المؤهلات العلمية

-دكتوراة في الرياضيات البحتة، جامعة صفاقس-تونس، عام 2019م
-ماجستير في الرياضيات البحتة،  جامعة قابس-تونس، عام 2016م
-بكالوريوس في الرياضيات، جامعة صفاقس-تونس، عام 2010م 

الخبرات

الخبرات التدريبة

التخصصات والمهارات

المهام الوظيفية

الدورات التدربية

الدورات التدربية

[1] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint numerical ranges of operators in semi-Hilbertian spaces,
Linear Algebra Appl. 555, 266–284 (2018).
[2] H. Baklouti, K. Feki, On joint spectral radius of commuting operators in Hilbert spaces, Linear Algebra
Appl. 557, 455–463 (2018).
[3] H. Baklouti, K. Feki, O.A.M. Sid Ahmed, Joint normality of operators in semi-Hilbertian spaces, Linear
Multilinear Algebra 68(4), 845–866 (2020).
[4] H. Baklouti, K. Feki, Commuting tuples of normal operators in Hilbert spaces, Complex Anal. Oper.
Theory 14, 56 (2020).
[5] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11,
929–946 (2020).
[6] K. Feki, O.A.M. Sid Ahmed, Davis-Wielandt shells of semi-Hilbertian space operators and its applications, Banach J. Math. Anal. 14, 1281–1304 (2020).
[7] K. Feki, A note on doubly commuting tuples of hyponormal operators on Hilbert spaces, Results Math
75, 93 (2020).
[8] K. Feki, A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115, 535–544
(2020).
[9] K. Feki, On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra
Appl. 603, 313-328 (2020).
[10] P. Bhunia, K. Feki, K. Paul, A-Numerical radius orthogonality and parallelism of semi-Hilbertian space
operators and their applications, Bull. Iran. Math. Soc. 47, 435–457 (2021).
[11] K. Feki, Generalized numerical radius inequalities of operators in Hilbert spaces, Adv. Oper. Theory 6,
6 (2021).
[12] S. Chavan, K. Feki, Spherical symmetry of some unitary invariants for commuting tuples, Oper. Matrices
15(3), 1131–1139 (2021).
[13] K. Feki, T. Yamazaki, Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space
operators, Math. Inequal. Appl. 24 (2), 405–420 (2021).
[14] K. Feki, Some bounds for the A-numerical radius of certain 2 × 2 operator matrices, Hacet. J. Math.
Stat. 50(3), 795–810 (2021).
[15] K. Feki, Some numerical radius inequalities for semi-Hilbert space operators, J. Korean Math. Soc.,
58(6), 1385–1405 (2021).
[16] T. Bottazzi, C. Conde, K. Feki, On A-parallelism and A-Birkhoff-James orthogonality of operators,
Results Math 76, 209 (2021).
[17] K. Feki, F. Kittaneh, Some new refinements of generalized numerical radius inequalities for Hilbert space
operators, Mediterr. J. Math. 19, 17 (2022).
[18] K. Feki, Improved inequalities related to the A-numerical radius for commutators of operators, Turk J
Math, 46, 311–322 (2022).
[19] K. Feki, Some A-numerical radius inequalities for d × d operator matrices, Rend. Circ. Mat. Palermo,
II. Ser 71, 85–103, (2022).
[20] C. Conde, K. Feki, Some numerical radius inequality for several semi-Hilbert space operators, Linear
and Multilinear Algebra 71(6), 1054–1071 (2023).
[21] K. Feki, Some A-spectral radius inequalities for A-bounded Hilbert space operators, Banach J. Math.
Anal. 16, 31 (2022).
[22] P. Bhunia, K. Feki, K. Paul, Numerical radius inequalities for products and sums of semi-Hilbertian
space operators, Filomat 36(4), 1415–1431 (2022).
[23] P. Bhunia, K. Feki, K. Paul, Generalized A-numerical radius of operators and related inequalities, Bull.
Iran. Math. Soc. 48, 3883–3907 (2022).
[24] N. Altwaijry, K. Feki and N. Minculete, Further inequalities for the weighted numerical radius of operators, Mathematics 10(19), 3576 (2022).
[25] K. Feki, Further improvements of generalized numerical radius inequalities for semi-Hilbertian space
operators, Miskolc Mathematical Notes 23(2), 651–665 (2022).
[26] K. Feki, S. Sahoo, Further inequalities for the A-numerical radius of certain 2 × 2 operator matrices,
Georgian Mathematical Journal, 30(2), 213–226 (2023).
[27] N. Altwaijry, K. Feki and N. Minculete, Some new Estimates for the Berezin number of Hilbert space
operators, Axioms. 11(12), 683 (2022).
[28] N. Altwaijry, K. Feki and N. Minculete, On some generalizations of Cauchy–Schwarz inequalities and
their applications, Symmetry, 15(2), 304 (2023).
[29] N. Altwaijry, K. Feki and N. Minculete, A new seminorm for d-tuples of A-bounded operators and its
applications, Mathematics, 11(3), 685 (2023).
[30] N. Altwaijry, S. S. Dragomir and K. Feki, Inequalities and reverse inequalities for the joint A-numerical
radius of operators, Axioms, 12(3), 316 (2023).
[31] N. Altwaijry, S. S. Dragomir, K. Feki, On the joint A-numerical radius of operators and related inequalities, Mathematics, 11(10), 2293 (2023).
[32] N. Altwaijry, S. S. Dragomir, K. Feki, Bombieri-type Inequalities and their Applications in Semi-Hilbert
Spaces, Axioms, 12(6), 522 (2023).
[33] N. Altwaijry, S. S. Dragomir and K. Feki, New Results on Boas-Bellman Type Inequalities in Semi-Hilbert
Spaces with Applications, Axioms, 12(7), 638 (2023).
[34] N. Altwaijry, K. Feki and N. Minculete, A generalized norm on reproducing kernel Hilbert spaces and
its applications, Axioms, 12(7), 645 (2023).
[35] N. Altwaijry, K. Feki and N. Minculete, Numerical radius, Berezin number and Berezin norm inequalities
for sums of operators, Turk J Math, 47, 1481–1497 (2023).
[36] N. Altwaijry, K. Feki and S. Furuichi, Generalized Cauchy-Schwarz Inequalities and A-Numerical Radius
Applications, Axioms, 12(7), 720 (2023).
[37] N. Altwaijry, C. Conde, S. S. Dragomir and K. Feki, Some refinements of Selberg Inequality and related
results, Symmetry, 15(8), 1486 (2023).
[38] C. Conde, K. Feki, F. Kittaneh, Further seminorm and numerical radius inequalities for sum and product
of operators, Numerical Functional Analysis and Optimization 44(11), 1097–1118 (2023).
[39] N. Altwaijry, S. S. Dragomir, K. Feki, Inequalities involving the generalized spherical Aluthge transform
of operators, Results Math 78, 209 (2023).
[40] N. Altwaijry, C. Conde, S. S. Dragomir and K. Feki, Norm and Numerical Radius Inequalities Related
to the Selberg Operator, Symmetry, 15(10), 1860 (2023).
[41] N. Altwaijry, S. S. Dragomir, K. Feki, Upper Bounds for the Euclidean Spectral Radius of Operators via
Joint Norms, Linear and Multilinear Algebra, 72(5), 875–890 (2024).
[42] K. Feki, Inequalities for the A-joint numerical radius of two operators and their applications, Hacet. J.
Math. Stat. 53(1), 22–39 (2024).
[43] N. Altwaijry, S. S. Dragomir and K. Feki, H?lder-Type Inequalities for Power Series of Operators in
Hilbert Spaces, Axioms, 13(3), 172 (2024).
[44] N. Altwaijry, S. S. Dragomir and K. Feki, Norm and Numerical Radius Inequalities for Sums of Power
Series of Operators in Hilbert Spaces, Axioms, 13(3), 174 (2024).
[45] C. Conde, K. Feki, On some inequalities for the generalized joint numerical radius of semi-Hilbert space
operators, Ricerche mat 73, 661–679 (2024).
[46] S. Aljawi, K. Feki, Z. Taki, A collection of seminorms linking the A-numerical radius and the operator
A-seminorm, Mathematics, 12(7), 1122 (2024).
[47] N. Altwaijry, K. Feki and N. Minculete, On Berezin norm and Berezin number inequalities for sum of
operators, Demonstratio Mathematica, 57(1), 20230159, (2024).
[48] N. Altwaijry, S. S. Dragomir, K. Feki, Joint A-normaloidity of semi-Hilbert space operators and related
questions, Quaestiones Mathematicae, 47(6), 1305–1326, (2024).
[49] C. Conde, K.Feki, On the approximate A-numerical radius orthogonality of operators, Acta Math. Hungar. 173, 227–245 (2024).
[50] N. Altwaijry, C. Conde, K. Feki, H. Stankovi?, New Results on some Transforms of Operators in Hilbert
Spaces, Bull Braz Math Soc, New Series 55, 42 (2024).
[51] S. Aljawi, C. Conde, K. Feki, Some Refinements and Generalizations of Bohr’s Inequality, Axioms,
13(7), 436 (2024).
[52] N. Altwaijry, C. Conde, S. S. Dragomir, K. Feki, Inequalities for Linear Combinations of Orthogonal
Projections and Applications, J. Pseudo-Differ. Oper. Appl. 15, 68 (2024).
[53] N. Altwaijry, S. S. Dragomir, K. Feki, Power bounds for the numerical radius of the off-diagonal 2 × 2
operator matrix, Symmetry, 16(9), 1199 (2024).
[54] N. Altwaijry, S. S. Dragomir, K. Feki, Improved Bounds for the Euclidean Numerical Radius of Operator
Pairs in Hilbert Spaces, Mathematics, 12(18), 2838 (2024).
[55] N. Altwaijry, S. S. Dragomir, K. Feki, Power Vector Inequalities for Operator Pairs in Hilbert Spaces
and Their Applications, Open Mathematics, 22(1), 20240068 (2024).
[56] A. Baghdad, E.H. Benabdi, K. Feki, A note on the generalized maximal numerical range of operators,
Filomat 38(17), 6299–6310 (2024).
[57] N. Altwaijry, S. S. Dragomir, K. Feki, Novel Bounds for the Euclidean Operator Radius of Hilbert Space
Operator Pairs, J. Math. Inequal., 18(3), 1083–1097 (2024).
[58] N. Altwaijry, C. Conde, K. Feki, H. Stankovi?, Schatten p-norm related to some Transforms of Operators,
Commun. Pure Appl. Anal.; 23(12), 1990–2004 (2024).
[59] S. Aljawi, K. Feki, H. Stankovi?, Jointly A-hyponormal m-tuple of commuting operators and related
results, AIMS Mathematics, 9(11), 30348–30363 (2024).
[60] N. Altwaijry, S. S. Dragomir, K. Feki and N. Minculete, Inequalities for Operators and Operator Pairs
in Hilbert Spaces, Indian J Pure Appl Math; (2024).
[61] N. Altwaijry, S. S. Dragomir, K. Feki and S. Furuichi, New Bounds for the Euclidean Numerical Radius
of Two Operators in Hilbert Spaces, Symmetry, 17(1), 7 (2025). 

المقررات التدرسية

الوصف

الساعات المكتبية

الوصف

8 - 99 - 1010 - 1111 - 1212 - 11 - 2
الأحد
Sunday
الاثنين
Monday
الثلاثاء
Tuesday
الأربعاء
Wednesday
الخميس
Thursday